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FOREWARD

This paper was presented at the AIAA 18th Aerospace Sciences

Meeting, held at Pasadena, California on January 14-16, 1980. The

text has appeared as a preprint AIAA-80-0342. Since reprints of the

work are unavailable, the paper, with up-dated errata sheets included,

is distributed here as a University of Southern California School of

Engineering, Department of Aerospace Engineering Report, USCAE 138.

The work presents a comparison of analyses based on the asymptotic

theory for high aspect ratio wings with corresponding results from a

3-D full-potential computer code (FLO 22) for oblique wings as well as

a more conventional swept wing involving W3 , V;S& S"VCt l

component flows.

The paper also gives a survey and critique of the relatively recent

developments in the lifting-iine theory. The material presented obvi-

ously cannot be accomodated by the length of a single standard journal

article; various parts of this work are not expected to reach journal

publication stage for some time. The distribution of this report should

therefore serve a useful purpose.
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ERRATA

"TRANSONIC SWEPT-WING ANALYSES USING ASYMPTOTIC
AND OTHER NUMERICAL METHODS"

(AIAA Paper 80-0342)

H.K. Cheng, S.Y. Meng, R. Chow and R. Smith

Page 1, left column, 17th line in Abstract, change "swept-forward-wing" to
"swept-forward wing".

Page 1, right column, 15th line from bottom, insert "and" between "wings"
and "conven-".

Page 1, right column 4th line from the bottom, change "analysis" to
"lanalyses".

Page 2, left column, Eq. (2.1), change 'M '' to 'M
n

Page 2, left column, 14th line from the bottom, replace "that" with "the
scale".

''(57)" ''(56)
Page 2, right column, end of second paragraph, change to

below Eq. (2.6b), change "where" to "while"; Eq. (2.6c), replace "m"
with "F".

Page 3, left and right columns, Section 2.2, Weissinger has been cited and
misspelled four times.

Page 3, left column, 5th line below, i ). p,(2-7?,t3 add comma after "turn";
7th line below Eq. (2.7), replace 3by 6 )"; second line of § 2.2,
move "28-30" to the front of the parenthesis.

"(38)" "(37)"
Page 3, right column, 13th line of § 2.3, replace with

Page 4, left column, 24th line from the bottom, insert "will" between "but"
and "reduce".

Page 6, right column, 1 3.4, 2nd line from the top, change "admits" to
"admi t".

Page 6, right column, Eq. (3.11), replace ' with

Page 7, left column, § 3.5, 2nd line from the top, change "existance" to
'"existence".

Page 8, left column, 23rd line from the top, change "because" to "from".

"(53)" "(52)"Page 8, left column, footnote, replace with (2
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Errata (continued)

Page 9, left column, 4, 3rd line from the top, change "lead" to "leads".

Page 9, right column, 4th line from the top, change "posess" to "possess".

Page 11, left column, 7th line from the top, change "vorticities" to
"vort i city".

Page 11, left column, 26th line from the top, change "30"1 to "22.5 °"1 and
"1 = .755" to "A'. = .824".

CD

Page 11, left column, 39th line from the top, change "Futhermore" to "Furthermore

Page 11, right column, 3rd line from the bottom, change "convergenced" to
'converged'.

Page 11, right column, 5th line of 5.2, replace with .

Page 12, left column, 2nd line of 5.3 replace "(4.62)" with "(11,62)";
3rd paragraph * 5.2, 4th line, add Ref. 22.

Page 13, left column, 2nd line from the end of § 5, change "is" to "based".

Page 13, left column, 30th line from the top, delete "is".

Page 13, left column, 22nd line from the bottom, change "vorticities" to
"vortici ty".

Page 13, right column, 5th line from the bottom, correct the author's name
to read "KUichemann".

Page 13, right column, Reference 1: change "Buseman" to "Busemann"; write
"Uberschallgesch Windigkeit" as a single word.

Page 13, right column, Reference 4: change "Kvcheman" to "Kuchemann".

Page 14, left column, Reference 14 a: change "to appear in...." to "Journal
of Fluid Mechanics',' Vol. 97, pt. 3, 1980, pp. 531-556".

Page 14, left column, Reference 19: write "Traflugel Theorie" as a single
word.

Page 14, right column, Reference 28: change "Weisinger" to "Weissinger".

Page 15, right column, Reference 55: delete "and" from the 3rd line.

Page 15, right column, Reference 57: make the first letters in "Senkrechten",
"Einer", and "Gekrummten" lower case.

Page 15, right column, the Caption of Fig. 1, 3rd line from the bottom, change
"swept-wing" to "swept-wings".

Page 16, the Caption of Fig. 7, change "D" to lower "d".
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ABSTRACT

Asymptotic theories for high-aspect-ratio _i_ In the domain of interest, the flow field far
wings in transonic flow developed recently for from the wing section should pertain to a high sue-
straight unyawed wings and for oblique wings show sonic, or linear sonic, outer flow, which is
that the three-dimensional (3-D) mixed-flow calcu- representable.in the leading approximation by a
lations may be reduced to solving a set of 2-0 solution to the Prandtl-Glauert equation corresoona-
problems at each span station. For wings with ing to a swept lifting line (cf. 3ketihes in Pig. i:.
surfaces generated from a single airfoil shape, Thus, the theoreticl_ treatments(12-I) mentioned
local similutude exists in the 3-0 flow structure, must fid roots in Prandtl's original lifting-line
permitting the problems to be solved once for all idea (1 , even though the corresponding inner prc-
span stations. This paper reviews this theoret7cl blem to be solved is basically nonlinear and may
development and the related computational studies. involve an imbedded supersonic reeion. Apart from
The essential elements in the theory will be identi- gaining a better physical insight and a greater
fled, their roles are explained; their relationship simplicity in the swept-wing analysis, the approacn
to the lifting-line theory and related classical represented by Refs. 12-18 reflects a desire for
nethods are discussed. Differences among the impleme ting .he current computer-oriented 3-D
pivoted (oblique) wing, the swpt-back wing and the methods(20"

6
Jwhich'. though-be;ng very powerful.

swept-forward-wing in the induced upwash arebrought share the common problem of trading ac.uracy with
out. Examples of similarity solutions are demon- computer cost and storage requirements, as is well
strated for high subcritical and slightly super- known. While the prospect of the next-generation
critical component flows; comparisons with computers wi th arguallly powerful code development
relaxation solutions to a ful potential equation Is well in sl ght7Lb) they cannot directly answer
are made. The examples include both oblique and the question in the aerodynamic theory: namely, in
symmetric swept wings, the study also examine the what manner the 2-0 component flow on a swept wing
adequacy of the existing full-potentlal computer Is approached, as the wing aspect ratio increases.
code. Outstanding problems remaining for subse- The least contribution, to which the approach may
quent development are discussed. lead, is providing an asymptotic basis or wnicm tne

adequacy of the current 3-0 codes (their algorithm
1. INTRODUCTION and some of their implicit assumptions) can be ex-

amined.
Our sound understanding in the aerodynamics of Detailed expositions of the asymptotic thorv

_tigsweep, ad its use to control the conpressibL__. Otieleps€inso ;h smttct'er
wing efep, adts se tomcondro thep, .omoressb'*o . underlying this develoomentcan be found in Refs.
ity effec;, has been limited in the*pas-t -mostijYto 18
problems in the linear flow regimes,(l) Recent 13-18; the following will address more fully on
interest in aircraft wing nt aspects of interest to the aerodynamic understand-
potentiality for wg o dfyi di fing, to Ingand on examining its potentiality towards

dimensional (2-D) supercritical airfoil data for developing less costly computation procedures for
3-0 applications. (6-11) The flow problem in this aerodynamic design studies.
domain is necessarily nonlinear with a transonic The following sections will examine the esser-
component flow. In this paper, we review theore- tial elements of the theory,'their roles in control-
tical and numerical studies on high-aspect-ratio ling the induced upwash field and other solution
swept wings for this type of flow, including some properties. The discussion will bring out a numoer
• very rcmanil;s- of aerodynamic features distinjuish in oblique

(pivoted) w"Ina. .Ah .swept-forward winqs conven-.
tional swept winos. the delineation wi 1 maoe the

Index Fategorles: SibsoJc and fransonic Flow; distinctions from classical lifting-line analyses
Aerodynamics; Aircraft Design apparent. An exposition of the reduced problem of
+ Professor, Department of Aerospace ingineering detei-ln1ng-the-3-0 correction for the (inner) tran-

S Sasonic component flow Is given in section 3 wnere
Senior Staff Scientist. Research Department some of the subtle differences among Refs. 13-1!

Research Assistant, Department of Aerospace will be noted, and the local similarity in the 3-^

Engineering flow structure as well as an unsteady analogy are
* no Rexplained. The features of a recent development
Senior Research Scientist. Aeronautics Division. based on the full-potential equations wi'l also be

brought out. As in most asymptotic analysis oF this
Ca elbC Amillmitnluw*IAmemiuin type, the theory breaks down loca'lv in a numoer of

AeeUSS. I.. 190.ANe Menial. regions, of which the most important is verheos the

vicinity of the apex of a swept wing where the



I.

center line has a slope discontinuity; these and 2.1 "he Induced Uowash Field
other limitations, as well as the fundamental -

question of perturbing a supercritical shock-free The perturbation velocity potential *.(NF'
solution are examined In Section 4. Examples of representing the combined system of the bound and
solutions are demons:rated and compared with the trailing vortices in the outer-flow region, satis-
full-potential results in Section 5. where some fying the Prandtl-Glauert equation, is
limitation of the existing 3-0 full-potential com-I
puter Codes and a clarification of their formula- X. ( -. (;), ,.
tion are also given. : ;') ,' 0j'(2..)

2. THE ESSENTIAL FEATURES OF THE THEORY Ir-v ].- 9 NI

The basic Ideoyupd, in common with Prandtllslifting-line theory (/jfor high-aspect-ratio wings, The higher approximation of the outer solution

lies in the consideration of two very distinct flow
region.: one is a nearly planar (2-0) region mt i - A, (2.5)
to t.m wq section with a streavmise length scale
comparable to the typical wing chord co, and the must account for not only the finite aspect-ratio
other is a fully 3-0 domin with its size compars- effect as In Van Dyke's t"hjrd-prder' theory(27),

ble to the wing half-spn,b. They are the 'Inner" but also the nonllnearity , . 18 ) although the latter
and the "outer" region, adopting Van oyke's(Z7) J, II affect little the 3-0 corrections to the sur-
terminology. Since the aspect ratio ^ &,&** is face pressure of interest. For the type of center
nign, the flow in the outer region sees the wing lines considered below, we have eIther Nzl or
end its near wake) as a line of singularity - the Jg 1 . where 'aef.Ai/ -...
lifting line - in the leading approximation. We point out that the roll-up tendency of the

It may be clearer for the present exposition trailing-vortex (IV) sheet for behind the wing is
to begin with the more familiar lifting-line solu- controlled by the trailing vortT Tt T'W/s . Thus,
tion for the outer region. It is also convenient forA *f, the assumption of a flat TV sheet us-
to write down here the definitions of the dimensin- plicit in Eq. (2.3) is seen to iZe"sym totically
less inner and outer variables. For the outer correct, as long as I T O(l), Irrespfttive of the
regi2n. we will use the variables degree of nonlinearity in the inner f wrTY eqQn

(next to the wing section). Therefore, tl.isassumnp-
e '/r .-M, - i, Iu , tin will not preclude the proper analysis of the

(2.1) large deflection of the TV sheet in the x'-Z' plane
next to thT wing section in a full-potential formu-

and for the inner region. we is* the variables The most crucial knowledge from Eq. (2.4-) is

;E '/t . ;.7/, ;I z . ',. , the flow behavior in the vicinity of the liftingA ,4Sline. i.e. 2-16(9)-O and 2-0, from which the(2.2) induced velocity, hence the Incidence correction.
$1 44 / . 'r. can be determined. For center lines Involving only

straight segments, the oehavlor in question can be
In the above, (x~y,z) is the right-handed Cartesian written as
coordinate system with the x-axis pointing In the AV-free stream 3rection and z-axls in the lift direc- ta ' . 'd'X4P A l)i,8
tion; hereas (x'.y',z') is a right-handed ortnogo- C

nal curvilinear coordinate system with z' - z and t&A'Ar 9
* 0 being the center line of the wing planform

ct xC(y), and x' is the distance from the center
;ins measured in x-y plane [cf. Fig. 2). It Is ..
assumed that the reference centaer- line is located (2.-
:omoletely in the x-y plane, I.e. we are consider- where 1.. a1() and iota
Tng a olinar-wing problem. Note that Eqs. (2.1) thae el t h ee n expressed in th iner
are in effect the Prandtl-Glauert variables, with that the result has been expressed in the inner

the scale for the pertureation potential so chosen variables 2. ^ and 2 to facilitate easy identi-
:o match that of the inner soiution; and that Eqs. fication for subsequent discussions on the upwasn

effect; the last term is Independent of x anda.) are si.:ily the set suggested by the treansonic with
similarity law for the component flow, using the
maf efrnci chord co/2 as the basic length scale /*mA f.')m [*)
ano Z a VCesA as the comonent free-s&ream velar ' X +

it. more , is /a5 wItha beIng taken " O . - ) M'IA j Pr . )401 , , -, ,# ,
"yoical (absolute) angle of attack, or the wing " 7 -Jm,t'Flckness, or all practical purposes, we al(l) 6
ssum s 7" nd ds belong to the Sam order. For F0 - (27

convenience in the subsequent i1scussion 3n the where Z e for a straight oblique wing flw .F _
*elated classical w rk. we ,I:I employ a dimension- and
:es inner variable 6' as an alternative to the 4W ,(y)= ( , w(,i,-,'

i n to. 2.2) mme,. - (F. -)1 W 4'(I,-1ia.) (X.MY)'lj
j'l a s , ,",. (2 . 3 ,' - sin 4 -( A -F f ., , 2 .6 c )

for a svmmetric swept wing , Vs.M). in above,
sin A arsinA41?m ano COSA a i~j7Q CasA41!



Observe that P=d 4/47 SCAg P,/di. jump associated with the logarithmic singularity
The irs ter onthe igh of q. 2,~~jjjj -depend mainly an the vortex-shedding rate of tne

The first term on the right of .---- nd-vidual lattice, whose contribution is made
the concentrated vortex representing the wing sec- smaller as the lattice number Increases. [Error of
tion, the second group of terms proportional to such a nature will nevertheless remain.]

Q.(I, 't-,, oA IEdf , absent in the
classica( analyses, results from the non-vanishing Solutions to elliptic lifting surface at yaw
spanwise component of the near-wake vorticity. have been given early by Krienes in Ref. 33, wnere
This component of the vorticity Induces a logarith- solutions to the inverse lifting problem were
mically infinite upwash at the center line, as may superimposed to determine lift and moments of a 5:'
be antcipate'd-from a consideration of the local elliptic flat plate at yew (a helpful delineation
irrotational 2-D flow (cf. Fig. 3). This is re- of Krienes' analysis In the unyawed case can be
flected in the logarithmic dependence of A on found in Ref. 3 ). Of the five-term truncated
the aspect ratio A,. The terms in Eq. (2.6.) _._ series used therein, three terms were symmetric
which can be identified with the proper incidence spanwise, It is not clear if the remaining terms
correction (to the Inner solution, after properly could adequately describe the asymmetric span load
metching the inner and the outer solution) are of interest. Generalization of the liftino-line

-- 2 theory for a wing with a curved center line, as well

( .Z: - '- d 1, (-7 as a wing ir side slip, has been considered by
- ir 4  4 Dorodnitsyn(34) who noted the significance of the

[The term with the factor (in 2) will not be pre- logarithmically large upwash effect due to yaw.*

sent if the basic length scales for x: etc. is However, the analysis involved tl 8W/4 chord con-

taken to be c instead of * co]. The logarithmic trolled point, as in Weisingers , and therefore

term in ' gives a significant contribution of the 3-0 effect analyzed cannot be expected tc be

the near wake which is, In turn controlled by the asymptotically correct. The results were, in any

yaw. Similar (Iog4,)rms will rise from the case, restricted to small departure from a straight,

center&ke curvature
m
i (or from a time-depend- unswept center line in the linear regime.

ent I$). A case of curved center line has been studied

Two observations are essential in subsequent by Thurber i5) who consIdered a crescent-moon-snaped

discussions. First, the part of the induced upwash wing from the viewpoint of an asymptotic theory;
field shown in Eq. (2.61.). which varies with A and however, the solutions for the region around the
z, consists of the concentrated vortex as wll as wing section and the matching problem were not con-

the logarithmic behavior of the near wake; second, sidered (the upwash calculation also contained

since log A, results from the logarithmic sin errors[. Oscillating high-aspect-ratio wings .ith

larity in the upwash, the )og*, term wouldhavie curved center lines have been treated by the senior

been absent from the f in Eq. (2.6b) and expres- author in Ref. 36, where the basic reasons for

slon (2.7) above, if the induced incidence correc- the appearance of a logarithmically large uowash are

tion were taken simply (and incorrectly) as the explained.
finite part of the upwash field. In passing,
s 1- r" utsheasobedeiefo 2.3 The Asymptotic Approach and the Basic' Featu-es
iiar results have also bee rivedl for a ofthe Thory

straight obioue wing by Cook ), using Mellin
transformation techniques. The works under review adopt the basic ap-

2.2 Related Classical Analyses proach initiated by Van Dyke(
2
7) who considered

Prandtl's lifting-line theory as the leading

Among the earlier methods applyin-g the lift- approximation in an asymptotic analysis for a hign-

ing-line Idea to swept wings (see Ref. 3, 28-30for aspect-ratio wing. While this more formal approach

a thorough reviewl, fhe most well known is perhaps may break down near the tip of a rectangular or

that Of_ elsingerl . As pointed out by Jones and taper wing (where the asymptotic expansion is non-

Cohen 6), Weisinger's method does not recover uniformas is quite well known), the methods allow a

correctly the limit for the Infinite aspect ratio. systemiatic Improvement by successive approximations,

We may recall that In Weisinger's method, the and a clearer delineation of the various competing

bound vortices at each wing section are represented 3-0 effects. Thus Van Dyke is able to extend

by a concentrated vortex at the 1/4 chord point and Prandtl
t
s work_ or a straight. u wing to a

the Induced downwash (negative upwash) Is computed higher order 
(
3o

. 
On account ofthe tip nonunifor-

at the 3/4 chord point. Meverthelessthe logarith- 1Y_, however, the third-order results of Ref. 37
mic dependence on At, mentioned should be found does not predict co-rrectly-the totif l'ift and :rag;

also in solutions by the Weisinger method (applied there is, in addition, an error related to the Kutta
to high-aspect-ratio wings), since an upwash condition, to be discussed later.
formula equivalent to Eq. (2.4) was us$d therein. An example of the asymptotic analysis of this
On the other hand, the use of the 3/4 chord as an type, representing a significant departure from the

uPwash control point requires a uniform upwash, or assumption of a straight, unswept center line, is
one varying linearly in x'; but this requirement given in Refs. 12 (a) and (b) for an oblique wing

is not-met Iy Eq. (2.6a). In addition, its valid- in the framework of the linear theory of an incom-
ity also imply the assumption of a local 2-0 pressible flow. This linear analysis snares the
component flow devoid of the near wake, which Is same outer solution and the corresponding upwash
again contrary to Eq. (2.6).it~s ilure In the distribution n the subsequent transonic oblique-

high-aspect-ratio range, therefore, should not be wing analy1ses,14). 
The rather encouragingtoo surprising. .. . . . . . . .. ..

This conment does not *pply directly to the
vortex-lattice method le.

2
)amploying the e/I chord .This work was called t6-our attevfilon by Orr. G.

as a control point for each lattice (panel). This Daforno and R.E. -Mlnik of the Grumman Aerospace

is because the large upwash and spanwise-vorticity _ Corporation.

3



comparison with the more exact wing-panel method form of is dominated by the term - ,vr)"-A. ).
given therein suggests that equal success may be .$inA d Fr/.7 L, - A%,) which will generally
obtqIned for the transonic swept-wing analy-- reduce the downwash on an aft (or swept-back
ses1

13
-1

8
) at least for the oblique wings

+
. wing)panel where d/ < 0 -and augment the

(i) Departure from the classical analysis downwash on-- fh forward panel where div./di-ro . For
most span loadings of interest, dfr/d t.nds to

Aside frem the interesting dependence of the infinity at the tip 7 a ! I like (1-92 )',this,
induced upwash on the span leading Fr(y) and on together wl~th hejlogarIthm involv1;S Avjjg - A, .
the sweep angle A , to be delineated more fully and (,- 11Jeads to a maximum of 0 At) 'near the
later, there are other features in the formulation, tip of a swept-back panel.
which represent important departures from the There is also a minimum in nea--rthe
classical theory. One of these is the need for tip on an swept-forward panel (where the downwash
considering the sanwise component of the trailing reaches a magnitude of O(A.'

"
)). Although the

vorticity between the trailing edge and the down- magnitude of the Induced velocity becomes infinite
stream infinity in the reduced inner problem. Such at the tip, V reverses its sign and vanishes at a
a need is made evident by the flow behavior shown span station extremely close to the tips. This
in-Eq. (2.6a) where the second term gives a jump in tends to provide a reasonable description of the
v00e/ ; across the wing trace, being proportional span loading, in spite of the local breakdown at the
to - -"tAA.'affr./i . This means that the local tip. The latter's region of nonuniformity is esti-
component flow cannot be determined by a simple in- mated to be I t =7 0(A,1 In, ).
cidence correctTorot a wakeless 2-D component The asymmetrical span loading contributed by
flow as in Prandtl's original analysis. The solu- The aryportical span lodin conributed by
tion presented for the straight oblique wing in terms proportional to - roli in are respon-
Refs. 12 (a) and (b) confirms the importance for ible for the unbalanced rolling moment of an
treating the vortici ty the wing trace. In oblique (pivoted) wing , unless twist,wing bend, or
the more general cases t the partial differ- special pivot location is introduced in the de-
ential equation (POE) governing the inner region sign(5,ll). The extent to which this asymmetry

.ust also be corrected for the center-line curva- depends on the yaw angle A and on the type of the
ture and/or for a 3-0 compressi--'ity rects seo basic span loading f*(-) is illustrated in Fig. 1ea)da where the upwash functions (9) for oblqu wings

with an elliptic and with an extended-span ES)

One must observe that, as the component Mach distribution in . (9) are shown for A a 0 , 2.50
number , M approaches one (from below), the sweep and 45*. These Z'si were computed from Eq. (2.6) .
angle A must necessarily decrease toward zero with 2(7) normalized by the mid-span value f *, .
(unless ,-> 1). According ;o Eq. Q.( j a sm l jer and the (reduced) aspect ratio taken to be such that
.A. will not diiinish the importance of the ,SeCa - 8.4. We note that the griohs can be
logarithmic upwash field associated with the span- corrected for other aspect ratio by simply adding
wise near-wake vorticity, but reduce at the same to
time the spanwise component of the w.ke-vorticity .
itself. For this reason, the velocity will remain AZ 5r A so-iI 12.8)
essentially continuous across the wing trace in the r __M1 8.4
inner problem for transonic swept wings. The ES load considered has a root-bending moment

(ii) Kutta condition equal to that of an elliptic load for the same

The Kutta condition at the trailing edge plays lift but lesser drag(40). The span however Is
an i"icortant role in the present theory. While an longer, hence the name "extended span". For the

infinite (integrable) singularity in the 3-0 cor- ES distribution shown,_ the extended span is 1.15

rection to the surface speed could suggest only a times that of te elliptic one.
local breakdown (nonuniform) of the asymptotic We note in passing that at . - 0. the ES
solution near the trailing edge, it gives an load induces a lineal distribution in the upwash,
erroneous correction for the entire wing section. equivalent to the effect of a wash-in, and the
This is because the latter represents an unwanted asymmetry caused by the yaw wiT7ur'her increase
eigen solution to the homogeneous boundary-value this effect on the downstream side, turning a
problem, as is shown quite clearly by the explicit regular downwash into a (positive) upwash on the
inner solution in Refs. 12 for an oblique-wing, aft-panel tip. The amplification of the induced
Similar problems appear for the unyawed straight velocity in the out board region of each panel, and
wing at the"tnird orderewhere the particular solu- the existence of a maximum and a minimum in the
tion to the inner problem given originally in Refs. manner discussed earlier, are quite apparent from
27 and 37 violates the Kutta condition, as blng the figure.
incovered and corrected by Kida and Miyai(3 . The induced flow-angle correction will depend

2.4 gehavior of the Induced Upwash on Swept Wings also on the center-line geometry. Fig. S shows the
span distribution of normalized XV #1 for sym-

The part of induced upwash distribution in the metric swept-foward and swept-back wings, at
- -- different degrees of sweep. It is assumed in the

calculations that the span loading J%(?) (based on
the strip theory) Is elliptic, and the (reduced)

The scales in the span loadings shown in Fig. 3 aseect ratio , s , is .26. Results for
of Ref. 12(a) and in Figs. 4-6 of Ref. 12(b) five values of A. (0, _22.5",t45*) are shown. At
are incorrect; they should all oe reduced by m., 0.755, . - : 22.5* and t45* corresponds to
a factor of 10. 1.15.2" and t 33.33*, respectively.

The "amiliar fact aoout the need for a wash-

out on a sweot-bacK wing is quite evident from :me
large reduction in 'ear the tip shown.
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The usefulness of adopting a forward sweep (A< 0) is that which will keep K. at the unit order, while
in counteracting the above effec: is also quite M does not exceed one. Let
evident from Fig. 5.

For value of A other than 9.26, the cor- A 3
rection to V indicated in Eq. (2.19) again AK
applies. The behavior near the tip of a swept wing The foregoing condition is then equivalent to the
is again similar to that observed earlier for the requieent tj=0(1). Finally, there is a reduced
oblique wing; but in approach the center corre- aspect ratio controlling the 3-D influence, the
sponding to the wing appex, the magnitude of the reciprocal of which is
induced upwash becomes unbounded. This divergence
is expected from P. which, upon V --s-0, yields E _(3. 1c)

- T i) (2. a) Note that a (MaKe) The asymptotic
analyses of Refs. 13-18, including the unswept case,

This is well borne out in the 5 swept-back ca pertain to 4he limit E--O, while keeping K,, and
case, (also- 'a "  ) fixed. With the additional re-

for which the downwash near the center is more
severe than other cases shown. Unless (O) 0, quirement M.< 1, the conditions on(3 and K.Unlessamount to
the theory will break down at = 0. Comparing

(Z._Vf)A(' with the leading term in Eq. (2.6a), ®)< K, - 0(I) (3.2)
in conjunction with Eq. (2.9 ), reveals readily
that a complete break down occurs where (-.). When the center-line curvature is taken to be

S- AnA )/L becomes of unit order, i.e. zero locally, and the disturbance is assumed to be
at sufficiently weak, the POE in the flow region next

to the wing under conditions just mentioned can be
S i A(2.10) obtained from an expanded form of the full potential

equation in the rotated coordinates (x',y',z:) as

This nonuniformity will be discussed further later
in the context of the nonlinear transonic flow. -
In passing, we note that unlike the upwash on a
swept-back wing..the '. e near the apex - M"( "j'M:)t. *: .... O (3.3)
station of a swept-forward wing does not become A
excessively large until 7 comes very close to the where the terms omitted can be shown tc beorigin. Thus, break down of the theory near ,0 weetetrsoitd(-Icnb hw eb

relatively small on the basis of the transonic
may be less severe for the swept-forward case. small-disturbance assumption (i.e. I- m:O(.(.),

3. TRANSONIC SWEPT WING: THE INNER PROBLEM A ) , /AW, : " ' Z : 0(0 "1I.
Except for the third term, the equations shown qbove

We consider high subsonic flight near the are familiar o transonic smal-distur-
speed of sound. As is well known, the perifor~ -e - " ebance (TSD) theory - . The added term,
speedofsound. wing is wellnown thpi rap c -ZM.taP 0,, results from a- compressibility

correction to the velocity divergence (owing to the
rise as Mar&l. With a moderate sweep, however, one
caiin-Fr m-lt- fIghi-Mach-number ofr-a-h1 gh'aspet "" spanwise variation of the density) and will re-

ratio wing closer to one, while keeping the compo- main also In the linear regime, unless M. or

nent flow around the wing section at the verge of tanA vanishes. In terms of the inner variables

the drag rise. [cf. Eq. (2.2)] the above equation can be written as

3.1 Basic Parameters and POE f . '-" t" ]

The basic component flow in this situation Is with the remainder being comparable to E . Thus
necessarily nonlinear and of a mixed (hyperbolic- the 3-D compressibility correction appears as a
elliptic) type; if the wing sect'ion Is sufficiently correction to the Von Kirmln equation 40 ) and the
thin, this component flow at each span station wil] reason for introducing the reduced sweep angle
obviously be control IeV by--t1e t-fanisonic simi larity ()a A/ ccvo is made apparent. A pressure
parameter based on the component Mach number coefficient may be computed from the solution as

K. a w4 J1.U,, - pCe5

familiar from the transonic small-disturbance
tmhiory( " 0 -M. On account of the stronger spatial With a remainder comparable to C*. Note that
attenuation for disturbances in a 3-D flow field, as long as ® -() ), i.e. A - 0(t" ) C, is
it Is possible to match this predominately 2-0 unaffected by - .

nonlinea, inner flow with a basically linear outer We note that in the transonic similarity
flow described earlier. As observed ;n (2, the ....
swet_anqle A must be confined to a relatively far- parameter defined in Eq. (3.la), the denominator is
ow range, because, if A is too small, M will take a the first power of M( s in Murman and

exceed the drag-rise value of the wing secti
)

on, and also Murman and Krupp . This choice

if A is too large, the M would become so far rom gives a definite improvement in the accuracy of the
critical flow speed, hencethe wave pattern near

unity that the advantage of a high pressure co- the sonic boundary. as pointed out in Ref. I4(b)
efficient will be lost. The A range of interest and in Ref. 46. One also may note that most of the

Cn nRf 6 n lo oe;a oto h



"oA" factors appearing In Eqs. (2.2). (3.4) As seen above, the 3-0 correction considered
(3.7), except that in (1-,2) of K. , can be represents a small peturbation of the basic 2-0
replaced by unity because of (D - 0(l). However, component flow. The analysis can be made -ore sys-
its retention in Eqs. (2.2) and (3.5) will allow a tematic by solving for the coefficients in the
greater range of he sweep angle A for the valid- asymptotic expansion for small E
ity of the theoryi14b). A A

3.2 Conditions on Wing Surface. Wing Trace and
ahock

with a corresponding expansion for the unknown
For an impermeable thin wing surface with the shock boundary

leading and trailing edges in the wing plane do- A

scribed by x - 3(9) and x ̂ (y), respectively, the A = (2.9) -( ,X( , ) +... (3.10b)
ordinate can be written as

A, , V A where a weak logarithmlic dependence of4,&!d xAone Is
Z [ .. Z3C,)- expected (in view of the nature of the upwash ex-

.- ined in §2). The resulting equation of particular

-. 1(9)] , (3.6) interest is POE governing

where Z , Z& , and I are all of unit order, and
the "I " in 2t signifies the two different (3.11)
distributions for the upper knd the lower surfaces. The nonhomogeneous term on the right results from
The functions 20 (9) and 1 (9) represent, the 3-0 compressibility correction, it confirms the
respectively, a wing twist and an (upward) wing- remark given earl ier CJ2)that the upwash correc-
bend; they are introduced to allow control of the tion alone does not give the complete answer to the
3-0 effect. The wing boundary condition can be 3-0 potential problem.
transferred to the wing plane (1 0) to read -'-As in most standard perturbation analysis invol-

ving shock waves, the jump conditions are ana-

__ .yti(3lyfro _: x O(M) to the un-11 T . it. perturbed boundary x , x 3(2;) where the resultnleg

cncI tIon and , read

where the subscriptA "," refers to the wing. On 2( a - + < + " 0

the wing trace at a - 0 corresponding to the -

vortex sheet, the small-disturbance approximation - &.. 3.

gives the requirements that pressure jump and the -t ;e (312a)
nora il velocity are zero. In view of Eq. (3.5), AD A (3.12b)
:his leads to the condition that the two components X (

of the velocity perturbation, $2 and $, are where<>nd stands for arithtical mean
required to be continuous across the wing trace.
Therefore, in solving for the 3-0 correction for and the difference across the discontinuity surface,

the inner solutionwe can treat the problem as be- respectively.
ing wake!ess. This simplicity follows from the 3 The Far Field of the Inner Solution
fact already noted that the spanwise component of
t.he wake-vorticity is not large enough to warrant At a point sufficiently far from the wing sec-
consideration in as much as A is small. tion, the solutions & and $ admits a behavior,

The POE (3.4) is of a mixed type depending on apparent from the governing POE,

K , and $-. ; the characteristic surface of the A

hyperbolic region, -*c(f,9) is given by(
4
7) A A, r.( A

K-*, -z® ;
- (.4)2 (3.8) ~ dn- - -f (313.

In the limit q-.O, we identify the critical speed where
.or the 2-D component flow J 'K. T^ (3.13b

SA . As well known, the behavior shown in (3.i3a) rePre-
S . = K sents a concentrated vortex with a circulation

I * I. equal to the potential jump at the trailing edge.
disct- The leading term in Eq. (3.13b) "s simply the con-

The POE (3.4) admits weak solutions with disconti- tribution of-xE, eon the RHS Eq. (3.11), using
uitv surface consistent with the Rankine-Hugoniot trV.tio f t Eq. ( 1 u

s Eq. (313a). The next two terms in Eq. t3.l3b) are
shock relations under the TSD approximation. "'One simply the two components of the induced velocity
of the jump condition is of the same form as :he to be determined by matching with the outer sol-
:naeacteristic equation (3.8), with ^x'( there re- t ion.
placed 'y 2 0,1) (the superscript "'" refers to
the shock discontinuitv) andrE- replaced by the The remainder of (...) in (3.13a) is zomoar-
ar:hmetical -ean of .across the shock. The able in magnitude to the doublet. i.e. to If
otner condition governing the shock,corresoonding including terms proportional to , and
:a the continuity of the tangential velocity,can f:til/ 4 , as ;s Quite well known From the 2-0
ae simol taken to be :he cont;nuitv of J. TSD analyses. The remainder (...) For $, in (3. 3b)

is comparable to unity, (,o 6e more precise, to
3.3 .er:troaticn Analysis (.1 1i 2, :.'l and ,nity), including terms



oroportional to )T ,s well as the doublet strength
in the far-fielc o4 00. It must be pointed out
that these remainders are not essential for formu- Z 2 .
lating the reduced problems for 1o and 01, but its .r -_..2 l: d. .i
use at the far boundary in a nuqerical computation "- K. 7
Droves to be very he pful(13Ij. With these identifications, the inner and outer sc-

lution shown in Eas. (3.13) and (3.16) are seen to
3.5 A Line-Source Effect match [for all terms snown, except the third (hir-

- - ' er-order) term in Eq. k3.16)]. Def. 14 also con-
J Amona the ioqarithmic terms mentioned is a firms the matching to a higher order in l-F

"1 
and E

(pure) line-source term (cZw)"t.IfL Its existance between (1o *0,), and (0o ,), in which the
could have been anticipated from the appearance of strengths of the line doublet, the vortex, and the
the source-like 3-D compressibility correction on line-source for the outer 0, solution are determired.
the RNS of POE (3.4) or (3.11). Ref. 1

4
(a) shows ^.

that, for a stra ight center Ine, the source strnh A With C,' and C now determined in terms of

1M can be explicitly computed from one of the T 0(9). it is assumed that the inner solutions for

) t stengh beeplnginy oute fr-fioeld ote- ko and i,, which fulfill the Kutta condition and
ooublet strength belonging to the far-field expres- are continuous everywhere except across the wino
sion of 1o; the result is also applicable in cases and i h uely
involving piecewise straight segments.t This and an n the wing trace ( g>t, he 0), are uniqe-

anoter am f te oder ogJJ ae nt fund determined by their PDE's, together with their re-
another term of the order loM) are not found spective conditions on the wing and on the wing tram

and the far-field conditions Eq.(3.13).

The existence of a nonvanishing Q, ctn be
readily demonstrated for cases in which iro2 can be The problem of s wing is thus reduced to
neglected._Note Eq. (3.111) becomes solving first a strictly 2-D system involving the

nonlinear TSD Eq. (3.4) for 
g
o with its riont-hand

, 2.~2 - o (3.14) member omitted, and I therein replaced by So, and
S K ar next, solving another 2-D (linear) PDE~system wit'

in tne far-field In this case, the area the POE (3.11) for the 3-0 correction 0,. The
n t(i-). spanwise variable Y appears in the two (uncoupled!integra.1 of the RHS of Eq. (3.14) can be equated to POE system only as a parameter through the wing and

the total volume flux; therefore, the far boundary conditions. The solutions at each

2Q r d d, span station can be determined independently of an-

K, OP a other, except for the spanwise distribution of

2~ I"' a 2 ( (3,15) r 0 q and 14 ,-" which can be obtained afte!

K.. q - A= d7 ' , 0 has been determined from an adequate numoer of

where 6r is the far-field doublet strength of 00 span stations

associated with the airfoil thickness. It is thus
seen that the swept or oblique wing will presert a 3.7 Superposition of Similarity Solutions For 0.

line-source effect in the outer flow, which must be
taken into account in a third-order theory (in Van
Dykes sense(2 7, 37)), even in the linear case. - Owing to'the linearity, the 3-0 correction to
Thies line-soue, ill eno affe the litngr art. can be decomposed into separate Darts. There is
Ths line-source will not affect the lifting part an important class of wing surface geometry, for
of the linear problem, of course. which each of these separate parts (after being- hn hsuitably scaled), has similarity solutions indepen-
3.6 Matching with Outer Solution dent of 9, as does the basic solution J.. Thus,

In the inner variables ;,^ and 2, the b.ehavior the reduced 2-0 equation system in this case can cen the nner volutionearl andtheehavr Esolved once for all span stations. [This interesz-
o the outer solution near e renterlne, Eq. Ing soTuton stucture does not appear to be recoc-

nized by Cook in her analysis(lB).]

)T ZZ .1z]v This wing class requires that the wing section
9r 'li- zl - - at each span station be generated from a single

airfoil profile, but the local chord c(y) may vary:

-wN'e( -dj a .[e( ) x + local twist and/or wing bend for compensating the
a -c )3-D effect are aiso allowed, as in Eq. (3.6). This

Z - Z '3.16) geometry can be more specifically written as
where we have omitted all factors of Mn, such as r --
Mn */ In ta'1"/ z ) since its errcur can z'-, [0C9 M Y- 7
affect thq determination of o(()) at most to the ( 3.1)

order c 413 or C2 ,which in turn can influence where L(.) c c(y)/c o . Implicit in Eq. (3.1 )is
the inner solution through the upwash correction to that the center-line ; - z - 0 is the common
the order Es , at the most. The third term on the straight axis for the similar wing sections at dif-
RHS of Eq. (3.16) confirm the anticipation that the ferent span stations; the percentage-chord location
spanwise vorticity jump can be neglected, which is of this straight axis can be arbitrarily chosen,
seen to be proportional to *2/3c , hence compar- however.
able to 6 To describe the flow structure in question, we

Comparing Eq. (3.16) with the correspondina snail rescale , and 2 by the local chord c:v).
far-field behavior of the inner solution (i9 

+
6 and introduce the variables

... ) and noting he slight difference in the
definitions of I and 0. we-can nowv identify_ A =2/c . , cost, 1 1

Mo(y) = fo((y)) with cosl/3A lro( ) %r'cF), ' /'
and the induced velocity correction with (2+': The similarity flow structure admissible under Eq.

' - also dependson 0



(3.18), with due allowance for the upwash correc-
tions, is represented by 41"

4,~ ~ ~ 1 X z*2 (32c

S( . (;, Z where a tan" I~,k~t~z These results are
hr "(3.ZOa) completelyrecoveiable from the corresponding re-

where CSde/ld , and o, , and 2 are independent sults for go and 0, in-thie more general case, after
of '. The corresponding shock geometry, when an observing #.el , e2 41 , .

imbedded supercrittcal flow region appears, takes a(<KaY)(a/iw)5 Z, , 4z ea ,.v .,a) ,l.e2 etc.
on a similar form Note in particular that, nlirel, in Eq. (3-13b),

_o the upwash contribution 47, t. F appears in
x .E-z) E F)C'jr,0(F) neither 1t, nor 1'2, and that , j%, , , ,

etc. are pure constants.

+ 6 rK< '/ Zf. ) The upwash effect now appears as an incidence
[ correction rK, I' In the reduced problem and is

(3.20b) determined fromThe third term of Eq. (3.20a) is introduced so that
the jowash effect is transferred through the solu-
tion r2 to the wing surface as part of the inci(--- ' ^ + (3.2,)ince correction to whereas the second term- Z = ,

eE )^'4 accounts for the 3-0 compressibility
correction to the POE without altering the wing
boundary condition. with J ! evaluated from Ea. (3.17). The

The POE for S.. is the same as that for go with source strength can be determined with the, help of
'a.d z replacing x and A; the linear POE governing Green's Theorem; for the system with similarity

0, obtained from Eq. (3.11) is structure considered, can be explicitly evalualed
f rom ( 174:f

..... 2'where - and are the leading and trailing edge lo-
ot ive (3.21) cations in 3f respectively.

. ere the right-hand member results because 3.8 An Unsteady Analogy
9 -and )/0 The/P (~ef~t~

12 satisfies the homogeneous paft o-E. ( T.21). For wings with sections profile not being gen-
On the w ing portion of the x-axis (r, :%to), erated from a single shape, the greatly simplified
2 / / = / ' ,/V 2 = 'Oa" 24/2Z a I . solution procedure based on the similarity struc-
The jumO conditions for a shock, if it exists, ture discussed in J 3.7 is not applicable. An un-
must be derived from Eqs. (3.12), not from the steady analogy exists, however, which provides an
jump conditions for the weak solutions to Eq. alternative,and perhaps numerically more eflective,
(3.21). Since * i cp*, aid , cee'X, -d, I, i.^j solution-procedure for the inner problem in the

-'./4,& -f - :PS 12 o', the conditions in more general case.
question can be deduced frcm Eq. (3.12), to be L
applied at the unperturbed shock boundary x Let'i) AA.A 3.25a )

We cive below the conditions for r, . . .. , f z S

'the POE (3.4) then appears as

A- r ( 3.26)

ff o ~ 0 (3.22b) , 4  ~ z 9 ~ (.6

This is a familiar form in the analysis of unsteady
he far-eld behavior of , and Kcan be de- transonic small-disturbance flow in the nonlinear
Velooed from their governing POEfand will be given ,-egime(48 , 49). The wing boundary condition Eq.
3elow more fully than Eq. (3.13), inasmuch as they (3.7) now reads
are explicitly used on the far boundary in the
conmoutation Aork discussed in S. Here, for large A

-'. - .14) - (b . F (3 .7)

,, ,,1-,, to be applied at ^ - 1o. 4 ,

.-- =-,l r(3L2'3a Thus, an analogy of the inner Probiem for I with anS4unsteady 2-0 transonic airfoil proolem exists, in
*r;v -i -fl~. N ) z which, since f G is small, the unsteady notion is

' .'F. confined to the neionbornood of the :uasi-steady
-'r , limit. The crucial input to such an unsteady prob-

. ? I leam is of course, the incidence correction crK.-T i. which is a functlonal of ; the latter

'.- ' -ff~r.i2. 1  (3.23b) can oe reolaced by an aoproximate distribution

3



from a solution of Eq. (3.26),ith4T. C" set In passing, we may rerark :nat, ;4 a 2-0
equal to zero in Eq. (3.27). With the ADl.lIgorithm shock-free supercritical profile were to be used in

(49), this approach promises an effective compu- tne 3-0 wing design, the unswept (straight) wing
tational procedure, especially in capturing shocks appears to posess one advantage, (although there

*and in avoiding the ambiguity associated with the are other obvious drawbacks) snce the nonnomoge-
reexponsion singularity at the shock root as well neous terms of the PDE (3.4) vanisnes in this case,
as the problem with a very weak shock (discussed in and the remaining 3-0 effect can be eliminated by a

4.3). proper twist distribution

Numerical results have been obtained for
oblique wings via this approach in an unpublished - "
work by T. Evans and the senior author, and_ compare._.1reasonably well with those obtained from the local-
similarity solutions. Some of Evans' nonlifting
examples nave been discussed in Ref. 14 (b). [Of course, this condition can be useful also to

4. LIMITATIONS AND COMMENTS ON THE THEORY the oblique and swept wings, since the contribu-

pressibility effect, is relatively small in magni-The asymptotic nature of the analysis not only tude in! many cases.)

restricts the application mainly to high-aspect-

ratio wings, but also lead to a number of nonunifo- 4.2 Breakdown Near the Leading Edge
mities, i.e. regions of local breakdowns, which . I
limit considerably the usefulness of the theory. The breakdown of the asymptotic analysis of
There has also been questions raised on the unique- 3 3 can be separated into two categories. One
ness and existence of solutions to the reduced arises mainly fior a small-disturbance approxima-
problems. Comments on these and other questions tion which must fail in the vicinity of a stagna-
are given below ation point, or where the x-gradient is singular;

..... .. the other category associates more directly with

4.1 The Uniqueness Problem and Shock-Free Super- the high-aspect-ratio expansion, in which the soan-
critical Airfoil .. .. .wise gradient is assumed to-be small and must fail

Twherehun/?y is singular. The nonuniformitv cf
The existence and uniqueness of the reduced the second category will be-examined in J4.3.problem fo 0! *: c.ourse, ',he same in the 2-D

TSD theory 
4

U, '). For the uniqueness of the Stagnation points occur near both leading and
3-0 correction-f , the problem may be considered trailing edges, the problem is less serious with a
being equivalent to asking whether the ho neous sharp trailing edge since with the Kutta cond~tion,
part of POE (3.4) has a solution 0 with the region of this z.reakdown is exponentially small,

, 0. It is essential to point out that as ls well known. For an airfofi with a leading-
the swept and unswept wings, as well-asthe 2-D edge radius comparable to eC, , Vis proportional
airfoil, share the same uniqueness to (X.3) "'. near the leading edge and the TSD
problem mentioned, since the 3-D influence enters theory(

5 3
, 54) gives n like

only as a nonhomogeneous term in their eguations. -/ The sa
Thus the uniqueness proof given by Cook(l | -

T for-the even if the camberor absolute incidence,is comp-
lifting-line theory of the straight, unyawed wings arable to the thickness(55). The region where
in transonic flow should also be applicable to the -4 becoes comparable with unity is
swept-wing case. [The idea in Cook's proof runs fax
parallel to Morawetz's earlier work on 2-0 mixed-
flow in the hodograph plane(52), but differs from x-. 040d) : O(C'), (.2)
Morawetz's in the use of the physical plane and in
allowing circulation.] indicating that the leading-edge singularity will

Two important questions arise concerning the not affect the usefulness of the theory until one
analysis In which 1, represents a-shock-free super- reaches the nose region which is - = 0 ( tt),
critical (compnent? flow; (i) can a shock- free since - O(. ) here.
perturbation CO, exist? (ii) How should the shock It may be pointed out that the magnitude of
be treated in anasymptotic theory for small g in the drag coefficient contributed by the surface
this case, if f t is not shock-free? Definitive pressure in 2-0 is of the order :-- (of which a
answers to these questions are not avaiale to nonvanishing portion is contributed by the singular
date. In fact, the proof given by Cook

1 6
) aims pressure coefficient near the nose region), while

chiefly at proving uniqueness for the perturbation the
of a shock-free supercritical solution 4, with the stagnatIon region at the nose contributes t asmller leading-odge force comparable to v, i.e.
impjicit assumption that the perturbation solution As. The latter is exactly an order a higher
E |, wil exist. than ,'13 and, therefore, is essential if the 3-0

effect on the transonic drag rise is to be consis-

tently analyzed. For this reason aevelopment of
One must recall that the significance of the lifting-line theory on the basis of the ooten-

Morawetz's original uniqueness study was concerned the smil-disturbance assumption
with the question of existence (53), where- s3he apper to be worthwhiee ( )

. Additional reasons
found that, to maintain an imbedded shock-free apa ob otwie .Adtoa esnfoun tht, o mantan a imedde shck-reefavoring the use of a full potential equation are
supercritfcel flow, the airfoil profile variation, favon te us o al
say i -' t), cannot be arbitrarily prescribed on given later in 35.
a porltion of surface containing the maximum-velo--- A _ __ _ . . _-. j.----- - - - .3 Nonuniformity Near a Shock Root
city point, with the exception of certain very spec-
ial distribution of f(R). Cook's impLicit assumption For flow with an imeoaed supercrtical
then would amount to t e stipulatiton that 'x 1,

9



region terminating by a shock, the reexpanding sup- from the tips, and at a distance

sonic flow develops a weak singularity at the shock

root (the intersection of the shock and an imper- y Cc.) (4.5)
neaole surface), unless( 7he surface has a zero cur-

vature, as is well known 5 . In particular, the

fluid tangential velocity behaves as from the apex of q swept wing. Implicit in Eq.(4.4) is the assumption that the span load computed
0 /f.P[*Zn(f/ic,)..] (4.30) from To (i.e. from the strip theory) vanishes at

the tip like an elliptic load (cf. Fig. 6a).. For
A. an untwste tapered wing, or one with a square tip

where Uix , the subscript "i.r" refers to the (cf. Flg.s 6b and 6c), we infer that, instead of
shock root and Cy [C?( and V are rescaled Eq. (4.4), the nonuniformity in this case occurs at
coordinates with the origin at the shock root:

A~ -i -A A 7±= ()(4.6)
•Z) Air2 _A j (4.3b) This follows from the last integral of Eo. (2.6c),

- (J..3b) which, when interpreted in Stieltjes' sense, gives

• Zg.]i(UI•, 2 the additional terms (for 17O)

In above " a e9Z.' is proportional to the sur- ____ + Z'tIsnAc-)] (4.7)
face curvature and it, is a constant determined by
the surrounding flow. It follows that iW=A61221
becomes infinity at the shock root (4iso) likemlel, Afo
leading to a logarithmically infinite shock jump A comparisonofthe present solutions with

for C a$,/sk at the shock root, (cf. Eq. (3.12a)). more exact numerical analyses for the cases in-

Although, one may argue that this rather weak sin- volving untlisted tapered swept (or oblique) wings

gularity would affect little the. lift, moment as and for the swept wings with an apex, should be
well as drag, the Failure to yield a correct (Fin- helpful in assessinq the extent to which these non-
ite) pressure jump at the surface appears to have uniformities affect the usefulness of the analysis.

defeated one of the original purposes for analysing It may be pointed out that the flow field
the shock perturbation, next to the apex must, in any practical situation,

However, this local breakdown can be treated be modified by the presence of a (slender) fuse-
(14b), once if it is realized that the fonw of the lage; therefore, the solution breakdown near y - 0

eexpansion singularity in 2 (not in i) given in should not be a serious practical concern, and may
Sq. (4.3) is unaffected by the presence of the 3-0 presumably be separately treated. The relatively
compressiblity correction th rs in the composite small scale in 7 or (7tl) indicated by Eq. (4.4) -
POE i3.4). Thus any 3-0 (or the analogous unsteady) (4.6) suggests that the equation governing the

POEegon (run. thes apex and (he tipe toloou bnstead-
influence on the local str-crure of the I, or prei" regions around the apex and the tips to b re-

sure fieldcan result only through changes in the analyzed is the 3-0 TSO equation (noting that

constants r lt o A hrug =h e fat, Q e(* _ ). These extensions remain tohre onsans W , cSr , 3nd )C. In feet,
3V expanding s, and n i be investigated.

x 3d I (appropriate at points far From the shock
rot), one recovers from Eq. (4 .3a) the logarithmic
singularity in the Drevious expansion. Furthermpre,
iatching this with the singular solution to * E
$. +c $,+-Permits the determination of the correc- 5. COMPUTATIONS: EXAMPLES AND COMPARISIONS

tea values for the shock jump and for the shock-roe WITH FULL POTENTIAL SOLUTIONS

location. Inasmuch as the existence and uniqueness of

Implicit in the formulation involving shocks the solutions sannot be easily investigated, dem-
in #3 is that a 2,t1 is small relative to onstration of numerical solutions tq thiereduced

This condition is not realized where problem is an essential part of the study. The
the shock strength approaches zero. At least for theory has been limited by the assumptions of a
solutions constructed Fiom the similarity structure high-aspect-ratio and of the small disturbance; it
f § 3.7), in which the shock jump is controlled ex- is uncertain that the analysis may predict the
plicitly by -dl/dA , (weak) unrealistic expansion aerodynamic characteristics for swept wings to the
snack may appear from such an analysis (if the 2-0 same degree enjoyed by the lifting-line theory for
solution for the component flow has a weak shock). the straight unyawed wings. In view of this, and
However, the inner solutions based on the compositg__ the several nonuniformities of the analysis dis-
POE (3.4), or on POE (3.26) for the unsteady an- cussed in the preceding section, we consider the
alogy, will not encounter this difficulty. Comper- direction comparison with the more exact. 3-0 full
ison 3f the similarity solution with that based on potential solution an integral part of this research,
:ne ,nsteady analogy for the case involving weak Before going on to the discussion of the computa-
snocks is therefore valua le. tions, some remarks will be made on the basis of the

more exact potential-flow computation programs whicn
-.4 4onuniformities at Wing Tips and at the Apex are involved in tne comparison stuov.

As ade apparent in f 2.3, the analysis given 5.1 Remarks on Existino 3-0 Potential :9mouter
in 1 Z and 3, 4;thout fur:ner refinement, vill
,readown at a distance C044

The unrefined nature of the 'ar-fleld descri-
iIZ :) (421"f) 4.4) t;on in -*St d;scretized flow-fTeld computation

nethods, as a result of the computer storage and



computation time limitations, ;s well known. 'his
Problem becomes mpre serious in the 3-0 cases . . 53
(20-24). It is not at all clear from the published or -, a

data whether the grid distributions used therein that is, the upwash is con:inuous across the sneet
are sufficiently refined for the purpose of de- or the trace. This and the cont;nuity of 0.scribing adequately the upwash induced by the far- are then the correct TV-sneet condition, wni.n is a"

wake vorticities,which has been so crucial to the least consistent with the small-disturbance theory.
analysis of a high-aspect-ratio wing. On the other hand, the programs similar to those in

There appears to be an additional problem Refs. 22-24 do lead to results consistent wi:n ex-

brought about by the scarcity of the span stations perimental data. This can be reconciled by the
availale in the current 3-D transonic program observation that if we were to stipulate the in-
(2l-2 - In the FLO 22 code for planar wings(

2
2) correct assumption of continuity in OXX , then Eq.

total of t - ae. (5.
3
) would become consistent with 0. It is

lowed. Applying it to an oblique wing, for example, apparent that in the difference equations of Ref.
there remains only ten_(1O) stations on each wing 22-24, Eq. (5.3), but not Eq. (5.1). was actually

pan*!., and one certainly cannot attach too much used. We may conclude that while *=- 0 appears to
confidence to the results obtained for the tip be erroneous, the code actually uses the more

n -- appropriate condition Eq. (5.3), and that the wake-

users that the span load and sectional lift co- modelling in Ref. 21-24 introduces an error cam-

efficient so obtained are far from being very parable to that in the small-disturbance theory.

smooth--the values at successive stations appears
to alternate noticeably about some mean curve. 5.2 Computations of 0., *., and

Fig. 7 shows typical results of sectional lift co-
efficient obtained from the converged solutions - The reduced mixed-type problems for the

generated from two versions of the FLO 22 code for *, , and $'& in the similarity solutions ( J 3.7)
ai-elUpitli wing pilvbteff 30,eat M, - 0.755. Except are solved numerically by a relaxation method, using

for this limited, but noticeable, irregularity in type-sensitive difference operators corresoording to

the transonic-speed range which require some Murman's "fully conservative form,(
5
O). The pro-

caution in making a comparison with the asymptotic cedure of line relaxation used for F. may be

analysis the method is known to be capable of considered standard, except for the uses of an ii1-

reproducing the span loads determined by the proved far-field description with Eq. (3.23a)
+ 

and

(lineari panel methods for the subsonic speed of a third-order convergence acceleration scheme(60)

range(58). Shock fitting aigorithm?
6
l) is being used in con-

junction with the shock perturbation analysib based
Presumably, this irregularity has not been on Eq. (3.22) for .F , and similar treatment for rz?

observed in the 3-D computations us ng the tran- but will not be discussed here, inasmucn as the
sonic small-disturbance equation 

2
. We may point cases with subcritical, and slightly supercritical,

out however that the current 3-D TSD codes are not component flow studied below in § 5.3 are shock-
-applicable ditectjy_ t problems lacking a bi-leteral free.

symmetry such as that of an oblique wing. _Futher-
mre ..... the iml-disturoance assumption breaks- For *, . and , the probiems are linear
down near the leading edge, comparison with TS and the transition and/or shock-jump boundaries are

code will not reveal one of the imoortant limita- known from the . solution, but they require a

tions of the present (transonic) theory. For the greater storage owing to the variable coefficients.
two above reasons, comparison with the TSD codes A nonuniform mesh with 81 x 61 grid Points over ahas not been made. We believe such a omparison computation domain Ifir * 6, X1i * 6. were used b,hasno been ut e .eful ei evue sudy acocison Chang and Meng(13,1')( a-" is uniform over the w;ng
can be quite usefu In our fuure study focusing o section). A subsequent program employs three

successive grid-halvings up to a mesh of 124 x 32
From a strict theoretical view point, the most (with nonuniform ; on the wing). The leading and

serious limitations of current 3-0 full-potential trailing edges are located at 7,-1 and x +1,
codes is the empiricism Introduced by modelling the respectively (i.e. - T - V - 1); a departure of '"
inviscid wake in the formulation, which we believe from negative one can be accounted for by changing
is unnecessary. Two assumptions were introduced all T to (M'+ I * a) in the equations governing the
in Refs. 21-24: (1) the sitpe of the trailing similarity solutions. The case -7- S a I car-
vortex (TV) sheet is specified a priori; (ii) a responds to a swept, or oblique, wing with the
condition equivalent to (in the present notations) straight axis 1 - 0 coinciding with the 5O chorO

0 (5.) The iterative solutions in Refs. 13 ane 14 tses

is applied at the TV sheet. Assuming a thin air- uses a relaxation factor of 1.8 and 0.8 in the
foil section, assumption (;) Is seen tobeequiva- elliptic and hyperbolic region, respectively; 200-
lent to that in the TSO theory, with the TV sheet 300 sweeps are needed for convergence of the circu-
transferred to the 'wlng trace" on the x-axls. The lation to within iO

"
5. On an IBM 3031, using

condition (i is incorrect 4 strictly speakinq., double-precision arithmetics, the convergenced
and requires a clarification . WerE. T7T. - solution for each f requires typically 10-12
to hold on both sides of the sheet, Refs. 22-24 minutes:* We note in passing that a computer
would imply -that the POE at far-downstream should
yield (in the present notations)

A 2-5% change in surface pressure results fror
the improvement ;n the far-field description

This controversial condition was brought to my based on Eq. (3.23a).

attention by Or. Norman D. a11th. * The IBM 3031 at the University of Southern
Cal ifornia Camous has an expandable core memor
of 300-6400 K words.



program similar to that for g has been considered major-to-minor axes ratio of 20). The surfacepres-
in the pntet of a straight unyawed wing by sure coefficients in this case nave been presented
Small1 7 ). in the journal paper (Ref. 1ia), we consolidated

them here in a single plot iFig. 9) in order to
5.3 Examples: Comparison with Solutions Based show differences from the subsequent comparisons

on the Full-Potential POE involving considerably thicker wing sections and
larger sw ep angles. The free-strem Mach number

For the expressed purpose of comparing the and the sweep angle used in the FLO 22 calculation
asymptotic analysis Cthe similarity-solution is No - 0.8242 and A- 22.5 . giving a component
structure in particular) with the corresponding Mach number M - 0.7615. Thus, we have K" a 3.60.
full-potential solutions, we consider below exam- 0- 1.003 aA 4 , 0.1277 in this case; the com-
pies of oblique as well as symmetric swept wings pomt flow is slightly below being critical. The
with high subcritical and slightly supercritlcal FLO 22 data from NASA Ames (in :! l1 crosses and
component flows. All wing planforms considered "v')-and from Grumam (in small open circles) shown
are elliptic, with the major axis coinciding with In the plot appear to be rather close except next
the mid (SO) chord; the wing sections are gener- to the leading edge. The Cp values computed from
ated from a singLe profile NASA 3612-02, 10, the similarity solution (shown in solid curves)
rescaled to in er itrary thickness Ir. The latter agree reasonably well with the FLO 22 data except
will be set equal to at in the theory. These wings near the leading edge, as anticipated.
fulfill the geometrical description of Eq. (3.18) Encouraging is that the degree of agreement
and,therefore, the inner solution can be obtained with the FLO 22 data does not appear to deterio-
by a linerjcomination of the basic similarity rate much with increasing the wing thickness, or
solutions ., A . and % , which will be de- reuc th inrasiec ti Thcnsoeormined after specifying the componlent transonic reducing the wing aspect ratio. The consolidated
Parmeterse afte peciyinth copoen loctransofc plot in Fig. 10 shows the surface pressure coeffi -

parameters Kin the incidencepnd the locations of cin;_ at seven span stations on a 12% thick, 14:1
the leading and trailing edges. We pointed out elliptic wing, pivoted at AL - 30 for Nin- 0.7677.

that the airfoil profile considered has been used ecomponn Mach ar i M 3 or in this

in various wind tunnels and preliminary de ign The ca~pa ent Mach number s n s 0.6648 n this

studies of oblique wings at M - 0.60 - 1.(
1
4,62). case, giving Kn - 3.45. The three sets of surface

Several sets of these basic similarity solutions data of Fig. 9 are used to construct the Cp distri-
3.6l sd om t e b c sbutions shown in heavy solid curves. The Cp value

have Deen obtained fqr KN - 3.6 and Kn a 3.45, for the component flow is -0.689 in this case mid
and have been descr'bed in some detail in Refs. 13 both solutions give the appearance of supercritical
and 14. These solutions are used in the subse- shock-free rgions on the upper surface of the down-
quent comparison with the full potential solutions, strem wing panel.

To illustrate the solutions' Iehav r, we The agreement between the FLO 22 data and those
0 the surface distributions of 0oZ, .,?. and based on the asymptotic analysis in both Figs. .

6 - in Fig. 8, for zero incidence wd Kn - 3.45. and 10, should be considered as being better than
basic component flow, for the 6r shown in Fig. expected, inasmuch as the relative error in the

3 s slightly supercrltical. The critical codi- epctd insuhaterltverornth
3i r s te 2-0 or t in This critcase is asymptotic theory belongs to an order determined by

-ion fr/the 2-0 cm in this case is g4'I or 0, which ever is larger. The magnitudest /-+I -* .-To. of o" for the examples shown in Fig. 9 and Fig.

Numerical results comparable with our solu- 10, are, respectively, r - 0.153 and 0.243. It
tions are generated from one version of A. may be recalled that there Is a noticeable differ-
Jamescn's 3-D ful!-potential computer codes ence between the two sets of FLO 22 data shown In
"FLO 22" (See Refs. 6,21), which is used with im- Fig. 7. The agreement found here appears to add
plmmentations for oblique-wing analysis at NASA credence to the Ames data set in this case.
Ames Research Center Aeronautics Division and at
Sr,j.oman Aerospace Corporation Research Department.
The algorithms employed in FLO 22 are not fully
conservative, but this may not be essential for
shock-free solutions presented below. We point Ing agreement found for ha pivotad wings may
out that the rLO 22 data from NASA Ames and fron still hoid to some degree with the presence of an
Grumman are not identical, owing mainly to the useof different meshes. The availaoility of data apex in a syifmhetric swept wing. Figure II presents

" a consolidated plot for surface pressure coeffi-
from two sources is helpful in delineating the dlent at seven span stations on a symmetric swept
nature of discrepancy between our theory and te wing with the same basic (elliptic) planformsweep
frome aterogs s inotueed in5.1. at a eh angleand sect;on profile as those in the preceding
from the latter is still influenced by the mash Ing figure. The free-stream Mach number is however,
size, spacing of the span stations, number of It- lower with e a 0.7549; thus. Mn 0.6538,
erations, the detail of the leading-edge geometry
description, which are different in the NASA Ames rem s subcritical fort os sta.io. c pouneTon-
and the Grumman calculations. r citnu - mt atirons conint d-

A number of FLO 22 runs have been made for the
-ibl;Que eings with free-stream Mach number, swept
angle, wing-thickness, etc. chosen to give either *In both the asymptotic analysis and the FLO 22 cal-
<n - 3.6 or Km - 3.45 employing the same basic Cutlawo, L-aivw1mi qsvlorl r taken to Ue.eren-
airfoil section. An elliptc planform is used in dicular to the straight axis, tierefore, the sac-

eacm case; wing twist and wing bend are assumed to tional cuts s"own In FIg.O are graphically incor-
.a zero, as noted earlier. Among the first com- rect. The differences resulting from changing the ]

oarison studies made is a case ith relatively orientation of the cuts turns out to be numerically
thin wing section (% thickness ratio) and a rath- small, however.
*r nign ascect ratio (an elliptic Dianform with a4
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to ill Iust rate cte manner i n wn ich the solIut ions be- The examples analyzed tnius for do not include
have near the tip. whare the trends of departure of cases with imboedded shochcs. Solutions making use
the asymptotic from the FLO 12 analyses. as well as of the 3-D corrections for the Shock jump and the
between the two sots of PLO 22 date themselves, are shock geometry (113.3 and 3.7) and of the treat-

*clearly evident. Away from the tip, agreement is ment of the re-expansion towuniformicy (1-)
as reasonale as in the two preceding comparisons remain to be demonstrated. In this paper. we nave
for the oblique wings. However. the set of PLO 22 not discusse the computational study based on the
data in filloe circles (black dots) gives a consir unsteady analogy It3.8). yet co be completed. Un-

ten t Iy higher ak f or -Cp than the one I n open c ir- published results computed from this anaivogy withII es. The discrepancy may be explained by the un- an API algorithm by Evans compare rather closely
certainty associated with the fluctuating speise with similarity solutions and promise an effective
distribut ions of sectional lift shown In Fig. 7.. procedure for treating complicated shock patterns.
The asymptotic analysis tends to give a consistently .Whereas a localized treatment of the leading-
laser *Cp than the PLO 22 date on the lower surface eg radw spsil.aslto oti

*around the quarter chard. This tendency Is also dgefbrculdty is o ssibele, a lutingn tor hi
apparent from Fig. 10. This small but noticeabl dificlt ba is toel.op a litngln thor on-tTdiscrepancy may be theiae wt basi acfuthcypond irT tneory without the small-

assoiate wit theaccuacy disturbance assumption. A work along this line nas
degree of convergence in th IV slution. Results already beew carried out in Ref. 58, where, inter-
obtained most recently for ? , bsed on a more re- esngy sltosvaimaryfl.sruue
fined mesh and with a smell raesidue appears to fsig ouin i iiaiyfo tutr

altar the Cp values on the lower surface slightly my again be fon.As noted earlier, in (12-1).
In te riht drecton.the inner solution in such a formulation shoumo
in te riht drecton.provide a proper treatment of the vortex-sheet

The most importint piece of Information from geometry near the trailing edge, unaccounted for in
Pig It is the comparison made for the station most (if not all) current 3-0 computer codes.
Closest to the apex. At 10% semi-span from the Treatment of nonuniformities at the root and the
symetry plane (5i - 0.097). the agreement of the tip sides are the remaining problems for the lift-
asymptotic results with the FLO 22 data (in open Ing-line theory; their analyses for the transonic
circles) remain as good as other stations. Even regime-. as observed in ( J.4) , ould involve soflV-
for the PLO 22 data belonging to the second set Ing a fuller 3-0 problem.
(black dots), the agreement with the results -is-

on the siilairity solution Is stFi reasonable.ACNWEGMT

6. CONCLUDOING RENARIS The material in this paper is tak'en largely
from studies performed at the University of

The foregoing presentation has shown that Southern Cilifornia and supported by the Office of
Prandtl's lifting-line Idea, originally applied to Naval Research. Fluid Dynamics Program (Contract
an unyawed, straight wing of high aspect ratio, can- 000004-75-C-0520) as well as from joint studies
be extended to the study of 3-0 mixed flows over with XASA Ames Research Center, Aeronautics
transonic swept wings. Example" of oblique Division (through Agreements NCR-730-501 and
(pivoted) and symmetric swept wings involving high MCA2-OR-7304601)ond Grumman Aerospace Corporation.
subcritical and supercritical component fleas are Research Department. We are pleased to acknowledge
shown; comperisons with full-potential solutions the advice and help on the use of FL0 22 code ny
from existing codes are made. Except near the wing R.S. Hicks, A. Levin, and Rt. Lassie at the Ames
tip and the wing root, and also the leading edge, Research Center. The senior author would like to
where breakdown s are expected; the agreement with thank G.L. Owinel. C. Holguin, G. KVarpouzian.
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Fig. I The Cartesian and the orthogonal curvillin-
ear coordinates Illustrated for the wing
plane. The i and I"ordlnates are normal
to the wing plane.

Fig. 3 IlIlustration of a spanlise component of the
trailing vorticity which induces to a iog-
arithmically infinite upwash.

Fig. 4 TX upwash function ZI I lustrated for

- $-.39 at three yaw angles for an ellip-
tic and an extended-span distribution in

Fig. 5 The upwash function 2,ltilustrated for
elliptic lly loaded swept-forward and
swept-back wings of A a 14 at m e
0.755. Refer to text for conversion to
other aspect ratio and Mach numbers.

Fig. 6 Sketches Illustrating different types of

$ wing tip goomtry: (a) elliptic or pars-
bolic type, (b) tapered swept-wing
(standard) (c) tepered swept wing.

Fig. 7 Spanwiso Distribution of sectional lift
coefficient computed for an oblique wing
by solutions to the full potential equa-
tion (FLO 22) from two sources.

Fig. 8 Similarity solutions for !of. ,,, and
n the upper-and lower surfaces of an

oblique wing at Xn a 3.45. The straight
axis is located at the mid chord; the air-
foiI section Is generated from NASA 3612-
02,40 rescaled to an arbitrary thickness;

the section is set at zero incidence, with
out twist and without wing bond.

Fig. 9 A consolidated plot showI n surface C9 on

Elre s _ iati ens of a h gh-aspect- ra--
tio wing pivoted at 22.5 , at Flight

Michl nuior -0.924. The plinFoii is a 210:1
ellipse; the wing section is NASA 3606-
02.40 set at zero incidence, without
twist and without bend.

Fig. 10 A consolidated plot showing surface Cp on

seven span stations of an oblique wing

pivoted at 300 , at Flight Mach number
0.767. The plnform is a ;4:1 ellipse;
the wing section is NASA 3612-02,40, zero
incidence, zero twist and zero wind bend.

Fig. II A consolidated plot snowing surface C on
seven saw stations of a symmetric swept-
Deck wing with 30* sweep angle, at Flight
Mach nuer of 0.755. The basic plonform
is a 14:1 ellipse; the wing section is
NASA 3612-02.40, zero Incidence. zero twist
and no wing bond.
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